N ov 2 00 8 LAGRANGIAN STRUCTURES FOR THE STOKES , NAVIER - STOKES AND EULER EQUATIONS by Jacky Cresson & Sébastien Darses
نویسنده
چکیده
— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].
منابع مشابه
Lagrangian Structures for the Stokes, Navier-stokes and Euler Equations
— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].
متن کاملN ov 2 00 6 Inviscid limit for damped and driven incompressible Navier - Stokes equations in R 2
We consider the zero viscosity limit of long time averages of solutions of damped and driven Navier-Stokes equations in R 2. We prove that the rate of dissipation of enstrophy vanishes. Stationary statistical solutions of the damped and driven Navier-Stokes equations converge to renormalized stationary statistical solutions of the damped and driven Euler equations. These solutions obey the enst...
متن کامل1 5 N ov 2 00 7 Global regularity for the 3 D Navier - Stokes and the 3 D Euler equations
We prove the global regularity for both of the 3D Navier-Stokes equations and the 3D Euler equations on R for initial data v0 ∈ H (R). 1 Main Result We are concerned on the following Navier-Stokes equations(Euler equations for ν = 0) describing the homogeneous incompressible fluid flows in R. (NS)ν
متن کامل1 5 A ug 2 00 5 Lagrangian dynamics of the Navier - Stokes equation
Most researches on fluid dynamics are mostly dedicated to obtain the solutions of Navier-Stokes equation which governs fluid flow with particular boundary conditions and approximations. We propose an alternative approach to deal with fluid dynamics using the lagrangian. We attempt to develop a gauge invariant lagrangian which reconstructs the Navier-Stokes equation through the Euler-Lagrange eq...
متن کاملGlobal well-posedness for the Lagrangian averaged Navier-Stokes (LANS-alpha) equations on bounded domains
We prove the global well-posedness and regularity of the (isotropic) Lagrangian averaged Navier{Stokes (LANS-¬ ) equations on a three-dimensional bounded domain with a smooth boundary with no-slip boundary conditions for initial data in the set fu 2 Hs \H1 0 j Au = 0 on @« ; div u = 0g, s 2 [3; 5), where A is the Stokes operator. As with the Navier{Stokes equations, one has parabolic-type regul...
متن کامل